LIXOFT MIxtran Language Reference

Structural model

	DESCRIPTION: block
DESCRIPTION:	Optional text describing the model
[LONGITUDINAL]	[LONGITUDINAL] section Contains the structural model with:
<pre>input = { }</pre>	 input = { } list parameters that are estimated or used as regressor variables.
PK:	 PK: block permits to define PK models using macros, and to link the administration information of the data set with the model.
EQUATION:	EQUATION: block mathematical equations including ODEs and DDEs.
DEFINITION:	 DEFINITION: block used to define a random variable and its probability distribution.
OUTPUT:	 OUTPUT: block contains the [LONGITUDINAL] section outputs. output = { } list identifies the predictions or the modeled outputs that are fitted
output = { }	against the data set observations.
table = { }	• table = { } list

parameters or variables outputted in the result folder of Monolix.

Modeling discrete data with DEFINITION:

Time-to-event model

DEFINITION: Event = {type=event, maxEventNumber=1, hazard=h}

- · Event: name of the random variable, can be replaced by any name. It should be listed in the outputs, to be matched to the observed data.
- · hazard: hazard function, can be defined via an expression in EQUATION:
- · Indicating the maximum number of events in the maxEventNumber argument speeds up calculations

Count model

DEFINITION:

CountNumber = {type=count. P(CountNumber=k) = ...}

- · CountNumber: name of the random variable, can be replaced by any name. It should be listed in the outputs, to be matched to the observed data.
- k is a mandatory name for the values. The probability mass function P(CountNumber=k) should be defined as a function of k and individual parameters.
- It is possible to define directly the log of the probability mass function with: log(P(CountNumber=k)) = ...}

Categorical model

- DEFINITION: level = {type = categorical, categories = {0, 1, 2}, logit(P(level <=0)) = th1</pre> logit(P(level <=1)) = th1 + th2
- · categories: list of ordered categories, as increasing successive integers.
- P(Y=i): probability of a given category integer i, for the observation named Y. A transformed probability can be provided instead of a direct one. The transformation can be log, logit, or probit.
- The model is completely defined by the probability mass functions P(Y=i) for each category, or the cumulative probabilities $P(Y \le i)$.
 - · When the value of a probability can be deduced from others, its definition can be spared.

PK: macros

Arguments

-		pkm
Comp	oartment characteristics	
amount	Variable for drug amount in	Defi
	the compartment	para
concentration	Variable for drug concentration	and
	in the compartment	
volume, V	Compartment volume	
Administration		Adm
adm	Administration type to map	from
	with ADMINISTRATION ID from	indic
	dataset, otional: default value	ID ar
	15 1	
Targets		
cmt	Label of compartment (integer)	abso
target	ODE variable	For
Absorption		arriv
Tk0	Zero-order duration	annv
ka	First-order rate	iv(ad
р	Fraction of absorbed drug	For b
	Delays	
Tlag	Lag time	
Ktr	Transit rate	depo
Mtt	Mean transit time	
Transfers		For
kt	Transfer rate from one	bolu
	compartment to another	ODE
kij, kji	Transfer rates between	reset
	compartments i and j	Rese
keU	Transfer rate to an effect	at th
	compartment	data
Elimination		emn
k	Elimination rate	Coto
CI	Clearance	Sets
vm, Km	wichaelis-Menten elimination	(dose
		luose

Syntax for equations and ODEs

Svntax

- **ddt** x: time derivative of variable x (x can be any name)
- t 0: initial value of time
- x 0: initial value of variable x
- if, elseif, else, end: conditional statements
- a*b, a/b, a^b: math operators
- a==b, a=<b, a<b, a>=b, a&b, a|b: logical operators

exp, log, log10, sqrt, cos, sin, factIn, max, min ...: math functions

pkmodel macro

nodel(V, k/Cl/(Vm, Km), Tlag/(Ktr, Mtt), p, Tk0/ka,

(k12, k21), (k13, k31), ke0) nes common PK models with a list of meters. Single administration type single elimination only.

Administration macros

inistration macros apply the doses the dataset to the model. Dose types ated in the column ADMINISTRATION e mapped with the argument adm.

Targeting a compartment

prption(adm=..., cmt=...,

Tlag/(Ktr, Mtt), p, Tk0/ka) first-order or zero-order absorption ing in cmt compartment.

dm=..., cmt=..., Tlag, p) olus or infusion into cmt.

Targeting an ODE variable

ot(adm=..., target=...,

Tlag/(Ktr, Mtt), p, Tk0/ka) first-order or zero-order absorption, s or infusion. Amount applied to the variable in target.

t(adm=..., target=...)

ts the target variable to its initial value ne corresponding dosing times in the set (dose value not used).

oty(adm=..., target=...)

the target variable to 0 at the esponding dosing times in the dataset e value not used).

Compartment macros

compartment(cmt=...,

amount/concentration=..., volume=...)

Defines a compartment that can be used in other macros. Needs to be defined first.

peripheral(kij, kji,

amount/concentration=..., volume=...)

а peripheral Defines compartment of label j with two transfers of drug amount from and toward the compartment of label i.

effect(cmt=..., ke0,

concentration=...) Defines an effect with compartment а transfer of drug from compartment cmt.

transfer(from=i, to=j, kt) Unidirectional transfer process from compartment i to compartment j.

Elimination macro

elimination(cmt=..., k/Cl/(Vm, Km)) Defines an elimination from compartment cmt.

> /: Mutually exclusive (): Mutually dependent Mandatory arguments

t: time tDose: time of the last administered dose amtDose: amount of the last administered dose inftDose: infusion time of the last administered dose delay(x,tau): delay function for DDEs odeType=stiff: use a stiff ODE solver (add in EQUATION:) Comments begin with ;

Keywords

table = {thalf}

Auto-induction model for time-varying clearance

[LONGITUDINAL] input={Tk0, V, Cl, Kenz, IC50}

depot(target=Ac, Tk0)

ddt Ac = - C1/V*Ac*Enzddt Enz = Kenz - Kenz * (1- Cc/(Cc+IC50)) * Enz

> The drug stimulates its own metabolism via induction of the metabolic enzyme expression.

Kenz

Tk0

Kenz

C1

Enz

Ac

odeType=stiff

permits to use a

stiff ODE solver.

PK-PD-TTE: joint model for plasma concentration, tumor volume and death

```
[LONGITUDINAL]
```

input={V, Cl, Q, V2, Vm, Km, Mini, kp, kd, lambda0, betaM}

compartment(cmt=1, amount=Ac, volume=V, concentration=Cc) peripheral(k12=Q/V, k21=Q/V2) elimination(cmt=1, Cl) elimination(cmt=1, Vm, Km) iv(adm=1, cmt=1) The statement

odeTvpe= stiff ddt M = (kp - kd*Cc*exp(-R*t))*M

Msat = min(1000, M)lambda = lambda0*exp(betaM*Msat)

death = {type=event, eventType= exact. maxEventNumber=1, hazard = lambda}

output = {Cc, M, death}

Dose-dependent bioavailability

Using dose-related keywords: amtDose

```
[LONGITUDINAL]
input = {ka, k, V, D50}
```

PK: F = amtDose / (amtDose + D50)Cc = pkmodel(ka, V, k, p=F)

OUTPUT: output = $\{Cc\}$

> Using a regressor containing the dose information

[LONGITUDINAL] input = {ka, k, V, DoseReg, D50} DoseReg = {use=regressor}

PK: F = DoseReg / (DoseReg + D50)Cc = pkmodel(ka, V, k, p=F)

OUTPUT: output = {Cc}

Count model: zero-inflated Poisson model

[LONGITUDINAL] input = {lambda0, nu, f}

EQUATION: lambda = lambda0*exp(-t/nu)

```
DEFINITION:
CountNumber = {type=count,
 if k==0
    Pk = exp(-lambda)*(1-f) + f
 else
    Pk = exp(k*log(lambda) - lambda)
         - factln(k))*(1-f)
 end
 P(CountNumber=k) = Pk
```

OUTPUT: output = CountNumber

The output is the number of events (in {0, ..., infinity}) with an inflation of zero counts. Lambda decreases exponentially over time.